
Improving Search-based Test Case Generation with Local Search using Adaptive 
Simulated Annealing and Dynamic Symbolic Execution 

 
Dongcheng Li1, W. Eric. Wong1,*, Shenglong Li2, and Matthew Chau1 

1Department of Computer Science, University of Texas at Dallas, Richardson, Texas, USA 
2School of Computer Science, China University of Geosciences, Wuhan, China 

*corresponding author 
 

Abstract—DynaMOSA is an effective search-based test 
case generation algorithm. However, it uses an 
alternating variable method for local search. This method 
follows a greedy strategy that considers each input 
variable of an optimization function independently and 
attempts to optimize it. Some problems with this kind of 
search are that it can easily become stuck in the local 
optimal solution and its search capability becomes 
inadequate in the late stage of the search. Such 
constraints may lead to a dramatic drop in search 
performance. To solve these problems, this study 
proposed a local search algorithm based on adaptive 
simulated annealing and symbolic path constraints to 
generate test cases with high coverage for multiple testing 
criteria within a limited time budget. On the one hand, 
the simulated annealing algorithm was selected to explore 
the neighborhood of candidate solutions during the 
search. On the other hand, various simulated annealing 
operators were designed for the search of each statement 
to enhance the applicability of the algorithm in various 
programs. Additionally, symbolic execution was 
introduced as a supplement to the simulated annealing 
algorithm for local search to generate test cases for inputs 
with complex structures. Furthermore, the proposed 
algorithm was implemented in EvoSuite framework. 
From an SF110 open-source benchmarking dataset, 49 
projects or 110 classes were selected according to the 
complexity and number of objectives of each class under 
test to conduct the experiments. The proposed algorithm 
outperformed the original algorithm in generating high 
coverage test cases on most projects in terms of line, 
mutation, and multicriteria coverage as well as search 
efficiency. 

Keywords-automated test case generation; local search; 
adaptive simulated annealing algorithm; dynamic symbolic 
execution; EvoSuite 

I.  INTRODUCTION 
Software testing is a critical means to ensure the quality 

and reliability of a software system [1], especially in safety-
critical systems. Test case generation is the foundation of 
software testing and test cases are used to comprehensively 
cover software functions. A complete test case should cover 
situations in a software program and code as many as possible 
[2, 3]. Thus, software functions can be sufficiently validated. 

However, a global search may struggle to generate the 
specific values necessary for covering challenging parts of 
the program, while a local search that uses the alternating 
variable method (AVM) [4] with a greedy strategy can easily 
cause the algorithm to become stuck in a local optimal 
solution. Therefore, this study proposed a local search 
algorithm that combines adaptive simulated annealing and 
symbolic path constraints to perform the neighborhood 
search of optimal solutions. In an automatic test case 
generation problem, an optimal solution contains test cases 
that achieve high code coverage, and a test case consists of 
many test statements. Therefore, it may be beneficial to 
search for individual test statements. To avoid falling into 
local optimal solutions, an adaptive simulated annealing 
algorithm was proposed to explore the parameters of each 
statement effectively. In addition, a local search based on 
symbolic path constraints worked through the constraints 
encountered during the execution of test cases, thus achieving 
high code coverage. In this study, the solution space of test 
case generation was effectively searched through a trade-off 
of resource consumption between global and local search. 
Moreover, the proposed algorithm was compared with the 
state-of-the-art test case generation algorithm and tested on 
SF110 [5] open-source benchmarking datasets. Thus, the 
effectiveness of the proposed algorithm was verified. 

The remainder of the paper is organized as follows. 
Section 2 presents related studies; Section 3 describes the 
proposed local search for the automatic generation of test 
cases; and Section 4 describes the experimental setup and 
analyzes the results. Finally, Section 5 presents the 
conclusions. 

II. RELATED STUDIES 
A. Test Case Generation based on Local Search 

Local search is a supplement to global search. A heuristic 
search algorithm conducts a constant search in global space; 
however, it is difficult for a global search algorithm with a 
large step size in search and a random mutation method to 
step out of the current local optimal solution. The key idea 
behind local search is not to focus the search in the entire 
space of all candidate solutions, but rather on a set of feasible 
solutions obtained by the global search algorithm. It 
emphasizes the process of performing a local search in the 
neighborhood of current solutions to produce new feasible 
solutions [6]. Popular local search algorithms include hill 
climbing, simulated annealing, tabu search, and variable 
neighborhood search [7]. 
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As a local search algorithm is only concerned with the 
neighborhood of feasible solutions, it is incapable of 
searching the global space. By contrast, the global search 
algorithm’s capability to search the neighborhood of feasible 
solutions is insufficient as it needs to search the entire global 
space. Therefore, a memetic algorithm is created by 
combining global and local search algorithms [8-10].  

In automatic test case generation, the memetic algorithm 
was used to generate test data [11]. Sharifipour et al. [11] 
introduce a memetic ant colony optimization algorithm for 
generating structural test data. Wang [12] combined a genetic 
algorithm with hill climbing and applied in test case 
generation. Through experiments, the effects of the memetic 
algorithm were proven to be superior to those of the hill 
climbing or genetic algorithm alone. Liaskos and Roper [13] 
proposed another memetic algorithm that combined the 
genetic algorithm and artificial-immune-system algorithm 
with clonal selection for test case generation. The results of 
the experiments indicated that the proposed algorithm 
significantly improved the coverage of the generated test 
cases for the projects under test. 

Fraser et al. [14] combined the genetic algorithm with the 
AVM for test case generation. The AVM was selected as the 
local search algorithm to perform a local search for different 
types of data in a class under test, including strings, arrays, 
etc. Through combining the global and local search 
algorithms, the coverage of the test cases was significantly 
improved. In a genetic algorithm, the reproduction operation 
in the search process is based on chromosomes. Although 
such a coarse-grained search contributes to the search in the 
global space, it is difficult to effectively search the 
neighborhood of optimal solutions. In this respect, the AVM 
alleviates the deficiencies of genetic algorithms. 

Reinforcement learning has also been introduced to the 
local search for automatic test case generation. Esnaashari 
and Damia [15] proposed a memetic algorithm that uses 
reinforcement learning to perform a local search. The 
reinforcement learning module receives all optimal test cases, 
which are generated through the genetic algorithm, and 
attempts to generate new and improved test cases. The 
experimental results demonstrated that the proposed method 
can generate more quality test cases faster than many existing 
heuristic algorithms. 

Moreover, studies have indicated that local search is still 
a direction worth studying. The most popular search-based 
automatic test case generation framework is EvoSuite [16], 
the local search strategy of which is the AVM. Although such 
a memetic algorithm has a stronger search capability 
compared with the global search algorithm alone, it is less 
likely to eliminate the limitations of current solutions and 
avoid stuck into a local optimal solution. In this case, local 
search may be ineffective. 

B. Test Case Generation based on Symbolic Execution 
Ramamoorthy et al. [17] was the first to propose an 

automated test case generation technique based on symbolic 
execution (SE). According to SE, each branch is seen as a 
path condition for passing that branch. The results returned 
are a set of equality and inequality constraints over input 

variables of the program, which define a subset in the search 
space and execute the selected path. In this case, a test data 
generator attempts to identify a test input from the subset 
space that meets all constraints [18]. If no such input can be 
confirmed, the corresponding path is infeasible. Then, a set 
of inputs that satisfy various path constraints is obtained to 
generate test cases. Moreover, solving the elements in a path 
constraint set is a complicated mathematical constraint 
satisfaction problem. At present, common constraint solvers 
include Z3, SMT, and CVC3 [19]. These SE methods would 
not execute the program under test; instead, the program 
undergoes simulated execution with symbolic values 
obtained after resolving. Therefore, this type of SE is also 
referred to as static SE. As the program size becomes larger, 
path constraints sent back by SE may become gradually 
longer. In this case, the solving time of the constraint solver 
may increase, making it difficult to determine solutions that 
satisfy such constraints from a subset space, further leading 
to a decline in test case generation efficiency [20, 21]. 

To improve the performance of SE-based automated test 
case generation, dynamic SE (DSE) was proposed [22]. In 
contrast to static SE, DSE selects specific values as the input 
and uses a program executor to execute the tested program. 
From the current running status, DSE also collects decision 
statements that cannot pass the corresponding branch, namely 
path constraints. Ultimately, DSE aims to solve such path 
constraints with the help of a path constraint solver and 
generate new concrete input. This operation is repeated to 
continuously execute programs [23]. 

Furthermore, compared with static SE, DSE does not use 
symbolic values as input, but rather executes specific input 
values in the program. Thus, it can reduce both time costs and 
computing resources during each execution, leading to a 
rather high performance. However, the set of paths eventually 
generated is smaller than that of all paths because DSE 
continually searches program paths thoroughly [24]. Popular 
SE-based automatic test case generation frameworks include 
Java Bytecode Symbolic Executor (JBSE) [25], SUSHI [26], 
and TARDIS [27], which have all been developed based on SE. 

More specifically, JBSE is the first symbolic executor 
especially designed for processing programs executed on 
complex heap inputs. This is an advanced method that 
implements novel heap exploration logic and handles data 
structure constraints. Through this method, incremental 
checks of constraints over complex heap inputs has been 
proven effective [25].  

SUSHI, applicable to programs with complicated 
structured inputs, is a test case generator for generating high-
coverage test cases. It uses SE to generate path conditions that 
accurately represent the relationship between the program 
path and the input data structure. Moreover, the path 
condition is transformed into the fitness function for the 
search. Through combining it with an appropriate search 
algorithm, the test case generation performance can be 
improved. 

TARDIS combines DSE, search-based testing, and 
machine learning and is capable of efficiently generating a 
complete test suite at a class level. The main idea behind this 
method is to explore the path space of the objective program 
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by DSE, and to search and generate complete test cases 
through a genetic search algorithm guided by fitness 
functions that satisfy symbolic path conditions. Additionally, 
classification algorithms are also adopted to prioritize symbol 
equations that are more likely to correspond to feasible 
program paths. Through a path selection strategy based on the 
classification algorithm, the number of feasible paths of 
analytical procedures is increased, thus further increasing the 
number of test cases generated. Therefore, TARDIS has been 
proven to be a valid approach. 

As JBSE, SUSHI, and TARDIS indicate, automatic test 
case generation technology based on SE is advancing rapidly. 
However, SE still faces certain challenges, which are 
described as follows [28]: (1) path selection: when the 
program complexity increases, the number of execution paths 
that SE explores exponentially increases as the number of 
program branches increases, which may lead to the problem 
of exponential path explosion; (2) constraint solving: this 
restricts the efficiency of SE to some extent; and (3) memory 
modeling: how program statements are precisely translated 
into symbolic constraints has a large impact on the coverage 
of test cases generated through SE. 

III. LOCAL SEARCH ALGORITHM FOR TEST CASE GENERATION 
As search algorithms are continuously optimized, a 

population may consist of many similar individuals in later 
phases. In this case, all individuals in the population will 
begin to evolve in the direction of optimization, and the 
search performance of such a genetic operation will 
significantly decline. To specifically address this problem, 
the present study designed a local search algorithm for test 
case generation which plays a major role in the neighborhood 
search of feasible solutions, preventing the algorithm from 
falling into a local optimum, improving the convergence of 
optimal solutions, and eventually enhancing search 
efficiency. Through local search, new solutions available for 
search can be generated randomly in the neighborhood of 
feasible solutions. If new solutions outperform preceding 
solutions, the algorithm continues to search in the 
neighborhood of new solutions; otherwise, it returns to the 
previous solution. Such a search strategy is capable of rapidly 
approaching the optimal solution. 

In the EvoSuite framework, the AVM was applied in the 
local search of test cases, producing rather strong results. A 
key advantage of DynaMOSA [29] is that it is a novel many-
objective search method based on preference ordering and the 
dynamic selection of optimization objectives. Presently, 
DynaMOSA is one of the most advanced search-based 
algorithms for test case generation, achieving excellent 
results in international search-based software testing tool 
competitions each year [30]. However, it still has an 
inadequate local search capability, performs reproduction 
operation on chromosomes, and does not search individual 
genes. Furthermore, the difficulty in effectively and 
extensively exploring neighborhoods of superior individuals 
makes the search falling into a local optimum much more 
likely. 

A. Local Search based on the Alternating Variable Method 
The AVM [31], proposed by Korel, is a local search 

algorithm similar to hill climbing and adopts a greedy 
strategy. If a local search is conducted for a given integer, the 
AVM will select the current integer as the starting point to 
make exploratory movements, in which case the step size will 
increase by 1. If the corresponding fitness value increases, the 
step size will increase by 2, and if the fitness continues to rise, 
the step size will increase by 4. Moreover, the doubling of the 
step size will not stop until the fitness function stops 
increasing. If a “hill” is found, which signifies the existence 
of a peak value in the neighborhood, the growth of the 
previous step size (e.g., +1, +2, or +4) is adopted by the AVM 
as its new starting point to make exploratory movements 
again. If explorations that start from a starting point under a 
condition of a step size growth of 1 do not cause the fitness 
function to increase in the process of such a search, the same 
operation will be conducted in the negative direction of the 
current search at this point. In this case, the step size will 
increase by −1, −2, or −4 and so forth. When the fitness 
function that corresponds to a step size of −1 of the starting 
point no longer increases, the operation is performed against 
the abovementioned negative direction. This process is 
referred to as the alternating variable. During exploratory 
movements, the search by the algorithm stops once fitness 
functions corresponding to step size increases of +1 or −1 of 
a starting point are not elevated, as illustrated in Figure 1.  
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Figure 1. Schematic diagram of the alternating variable method 

Because of the greedy strategy, the traditional AVM can 
easily fall into a local optimum. Once the first peak value is 
searched, it will be reported back and the search will thus end. 
However, this peak value may not be the global maximum. If 
the first starting point is point C in Figure 1, the algorithm 
will directly converge and not perform a local search. 
B. Adaptive Simulated Annealing Based Local Search for 
Test Case Generation 

The simulated annealing algorithm [7] inspired by the 
following physical law: The motion state of molecules 
changes along with temperature variations. Under an ultra-
high temperature, matter molecules move fiercely. As the 
temperature drops, the molecular movement slows and the 
structure of the corresponding matter is inclined to be stable. 
Accordingly, molecular kinetic energy in the matter tends to 
decline. However, an excessively sharp temperature drop 
may sometimes incur condensation of matter molecules. 
Molecules in fierce motion may suddenly condense, which is 
deemed a pseudo stable state. In this context, the inter-
molecular distance can be found. To sufficiently reduce such 
distance, the temperature of the matter should be raised so 
that the matter cannot condense. Subsequently, temperature 
reduction is conducted to generate a stabler matter state. The 
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simulated annealing algorithm deals with the condensation 
state of matter. As the stable state cannot be directly 
identified as true or false, the Metropolis criterion was 
proposed by physicists, which uses a probability calculation 
formula to determine whether the stable state can be accepted. 

Objective optimization frequently involves feasible 
solutions that may fall into a local optimum. For example, the 
AVM may quit the search once a peak value appears. Such a 
problem can be avoided by the simulated annealing algorithm, 
which defines both the initial temperature and the rate at 
which the temperature falls. The algorithm selects poor 
solutions surrounding the peak value at a certain probability. 
Thus, feasible solutions can be prevented from falling into a 
local optimum. Moreover, the probability may decline as the 
temperature drops, which ensures the convergence of the 
algorithm. 
1) Simulated Annealing Algorithm Applied in the Local 

Search of Statements 
The simulated annealing algorithm was adopted to 

perform a neighborhood search. Specific procedures for 
applying the algorithm in the local search of statements are 
presented in Figure 2. 

 
Figure 2. Simulated annealing -based search of statement values 

In this algorithm, poor search results are received at a 
probability based on the current temperature. The forward 
search and backward search refer to a search at incremental 
and descending step sizes, respectively. Moreover, the 
temperature of the current iteration serves as the initial 
temperature of the forward and backward search to perform 
a simulated annealing-based search. 

Through forward and backward search, optimal values in 
forward positive and backward negative neighborhoods were 
acquired under the circumstance of the current value serving 
as the starting point. Then, the optimal point with a greater 
value between the two was selected as the new starting point 
to search again. A cooling operation also existed in an 
iteration of the same level, which ensured the final 
convergence of the search. 
 
 

2) Adaptive Annealing Operator 
A test suite usually contains statements of various 

datatypes. Because of the influence of internal codes, 
different programs under test exhibit different sensitivities to 
a local search for such statements. For example, a local search 
of floating point data is invalid for some programs but 
effective for integer data. Moreover, as the objectives are 
covered, previous local searches of strings may produce good 
results. However, the local search of strings in this case is 
ineffective. For the traditional simulated annealing algorithm, 
all local searches are treated equally and relevant search 
resources are allocated equally. Apparently, this is unsuitable 
for test case generation. Therefore, an adaptive parameter 
should be defined for statements of each datatype. Then, the 
adaptive parameters are used to adaptively adjust resource 
allocation for a local search of such statements. In the 
simulated annealing algorithm, the annealing parameter is the 
most effective parameter for controlling the search resource. 
For this reason, adaptive cooling operators are designed for 
statements in most datatypes to control resource allocation 
for a local search of test case generation; thus, the search 
performance of the algorithm can be improved. The specific 
implementation process is presented in Figure 3. 

 
Figure 3. Implementation of the adaptive annealing operator 

C. Local Search of Basic Datatypes 
EvoSuite, a test case generation framework, uses many-

objective search to simultaneously optimize the entire test 
suite. Each individual in a population is a test suite and a gene 
is a line of code statement. In this study, local search was 
conducted for statements of basic datatypes, including string, 
integer, short, long, byte, character, float, double, boolean, 
and enum. Simulated annealing was selected as the local 
search algorithm to prevent it from falling into a local 
optimum. Given that different programs under test exhibit 
different sensitivities to local search as a whole or the local 
search of diverse statements, adaptive annealing parameters 
were designed for various statement types to control 

g
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applications of local search and properly allocate various 
computing resources. 

In this study, basic datatypes were divided into four 
categories, namely string, integer (e.g., integer, short, long, 
byte, and character), floating point (e.g., float and double), 
and iterating (e.g., Boolean and Enum). Different local search 
methods were designed for each category. 
1) Local Search for Strings 

Data structures of strings are not as complicated as those 
of other datatypes. A string is composed of a set of 
unconstrained characters, but it has the most diversified 
components and is also the most unordered. To improve the 
string search efficiency of the algorithm, we needed to clarify 
whether changes in string values affect the fitness of the 
current individual before local search. If an impact exists, a 
local search of strings would be conducted, followed by 
character removal, character addition, and character deletion. 

Character removal: After characters traversed (or 
iterated) and removed from the original string, the fitness 
function of the current individual is calculated. If the fitness 
is improved, the local search of the string should be ended 
and the modified string returned. 

Character addition: To ensure the search performance 
of the algorithm, characters should be added to both the head 
and tail of the string. Starting from valid characters 9 to 127 
of the ASCII table, the characters are constantly added to the 
string. After each addition operation, the fitness of the current 
individual is calculated and, if it is improved, the local search 
of the string should be ended and the modified string value 
returned. 

Character substitution: In the event that all characters 
of an entire string are traversed, the simulated annealing 
algorithm is adopted to perform a local search of each 
character, and since the local search has been performed for 
all characters, the algorithm ends. 
2) Local Search of the Integer 

The easiest implementation of local search is fulfilled for 
data in the integer category. The simulated annealing 
algorithm directly performs a local search for integer. 
3) Local Search of the Floating Point Data Category 

Floating point data should be divided into two parts for 
optimization, namely integers and fractions. The search for 
integers is conducted by following the abovementioned 
procedure. As for fractions, the simulated annealing 
algorithm is selected to search fractions of the corresponding 
precision (i.e., single or double precision). 
3) Local Search of Iterating Datatypes 

Data in the iterating category are a set of enumerable data 
with a limited number of classes. Therefore, the fitness of the 
current individuals is calculated after substitution of the data 
in a statement through traversing or iterating. If the fitness is 
improved, the current local search is ended and current values 
are reserved. For example, “true” is replaced with “false” in 
a Boolean statement, or “male” is substituted by “female” in 
an enumeration type. 

D. Local Search for Test Case Generation based on 
Symbolic Path Constraints 

SE lays an essential foundation for automated test case 
generation. However, it is generally not used in test case 
search alone as it requires massive computing resources. In 
the TARDIS framework, EvoSuite is adopted to execute test 
cases, thus obtaining path constraints of the corresponding 
program to depict a conditional tree of paths. Then, test cases 
are generated with the help of such a conditional tree. In 
EvoSuite, DSE was also used to improve the mutation 
operation of the genetic algorithm. 

In this study, JBSE was used as the medium to acquire 
and traverse or iterate a constraint path set of current test 
cases. Then, the Z3 constraint solver was adopted and 
attempted to solve constraint paths of the current test cases 
and generate new ones. Only if the fitness of newly generated 
test cases is superior to the preceding fitness, can novel test 
cases be accepted; otherwise, they will be abandoned. For the 
specific implementation process, please refer to Figure 4.  

 
Figure 4. Implementation of symbolic execution -based local search 

SE is capable of effectively generating test cases with a 
complex structure, although its constraint-solving efficiency 
is rather low and may lead to the problem of path explosion. 
DSE, selected for local search in the proposed method, is a 
supplement to the simulated annealing algorithm and only 
conducts a local search targeted at a few individuals each 
time. Thus, the problem of resource consumption can be 
eased. 
1) Test Case Generation by Local Search Combining 

Adaptive Simulated Annealing and Symbolic Execution 
Local search is a supplement to global search. Only 

through the reasonable allocation of search resources and 
balancing of the trade-off between local and global search can 
the search performance of the algorithms be effectively 
improved and test case generation efficiency increased. 
Otherwise, adverse effects may be produced. 

p p
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Figure 5. Flow diagram of proposed local search 

To measure global and local search for test cases, critical  
parameters were defined in this study (as shown in Table 5). 
Where, the running time of the local search ensures that the 
corresponding resource consumption is within the established 
constraint. The interval algebra of simulated annealing or SE-
based local search is designed to guarantee differences in 
individuals of each local search and reduce the possibility of 
repeated local searches of the same individual. The number 
of individuals in simulated annealing and SE-based local 
search is established to ensure that the algorithm only 
performs a local search of individuals that exhibit the optimal 
performance after ordering in the current population. The 
local search probability of the simulated annealing algorithm 
represents the probability of the adaptive simulated annealing 
algorithm being used for local search. Each time the 
simulated annealing algorithm is applied, it is adjusted 
according to its variation rate. Once values of those 
parameters are set, whether the local search algorithm is 
executed in each iteration is determined. The specific flow of 
this local search algorithm is presented in Figure 5. 

IV. EXPERIMENTAL DESIGN AND RESULT ANALYSIS 
To evaluate the actual performance of the improved 

algorithm, various experiments were designed and conducted 

on SF110 dataset. The experimental results of the proposed 
method were analyzed in comparison with those produced by 
the AVM in EvoSuite. In this study, DynaMOSA served as 
the global search algorithm and, based on this, the proposed 
improved local search algorithm based on adaptive simulated 
annealing was named SA-DynaMOSA. The original local 
search algorithm based on the AVM was therefore called 
AVM-DynaMOSA. 

The experiments designed and conducted in this study 
were primarily aimed at answering the following research 
questions (RQs) for multi-criteria many-objective test case 
generation with local search: 

 RQ 1: How does SA-DynaMOSA perform compared 
with AVM-DynaMOSA from the perspectives of line, 
branch, and mutation coverage of the generated test 
cases? 

 RQ 2: How does SA-DYNAMOSA perform compared 
with AVM-DynaMOSA from the perspectives of the 
multicriteria total coverage of the generated test cases 
and the search efficiency of the algorithm? 

A. Experimental Design 
1) Evaluation Metrics 

To compare the test case search capabilities of relevant 
test case generation algorithms, the following evaluation 
metrics were selected to test and compare both the original 
and improved algorithms. 

Testing coverage: This metric represents the adequacy of 
the final test suite in testing the program, including line, 
branch, mutation, and multi-criteria coverage [29]. Multi-
criteria coverage refers to the coverage of all objectives (the 
aggregation of all branches, lines, and mutants) for test case 
generation. The metrics for calculating those types of 
coverage are as follows:

Number of covered statements 100%
Total number of statements to be covered

Number of covered branches 100%
Total number of branches to be covered

Num

statement _ cov erage

branch _ cov erage

mutation _ cov erage ber of killed mutants 100%
Total number of mutants to be killed

Number of covered objectives 100%
Total number of objectives to be covered

multicriteria _ cov erage

(1)

 
Search efficiency: By using the coverage percentage 

collected every second throughout the entire duration of test 
case generation, the search efficiency of an algorithm can be 
calculated using the following equation: 

TotalTime

Time
AUC i

ii

*2

*]cov[cov
120

0
1

                     
(2)

 
where covi refers to the percentage of coverage at time i, and 
covi+1 refers to the percentage of coverage at time i+1; Time  
represents the time interval, which was one second in this 
study; and TotalTime is the total running time of an algorithm, 
which was 120 seconds. 

The rate of increase for different testing coverages of the 
improved algorithm from the original algorithm was 
calculated based on the following equation: 

afterValue Value
100

Value
brfore

brfore
Increase _ rate %

        
(3)
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In this study, a proportional change of no more than 0.5% 
was considered a nonsignificant change or no change. 
Therefore, projects or classes with an increase rate above or 
below 0.5% were removed when comparing the coverage and 
search efficiency of the algorithms. 
2) Experimental Setup 

The proposed algorithm was implemented in the 
EvoSuite framework and compared with DynaMOSA. 
Experiments were conducted on the Windows platform. The 
setup for the experimental environment is presented in Table 1. 

Table 1. Experimental environment 

Hardware Intel(R) Core(TM) i5-6500 CPU@ 3.20GHz 
RAM 12GB 

Software Windows10 
Java 1.8 

1) Datasets 
In this study, CKJM was first used to analyze the 

complexity of all projects in the SF110 dataset. Then, projects 
with high complexity were selected to verify the performance 
of the proposed test case generation algorithm. 

Table 2. List of projects and classes under test 
Project name Classes Project name Classes 

gaj 1 biff 1 
sfmis 1 lavalamp 2 

imsmart 2 jhandballmoves 3 
jdbacl 1 hft-bomberman 2 

omjstate 1 dom4j 5 
beanbin 1 openjms 2 

inspirento 3 gae-app-manager 1 
jsecurity 5 biblestudy 1 
nekomud 1 lhamacaw 5 

geo-google 3 ext4j 1 
jni-inchi 1 fim1 2 
gangup 4 fixsuite 1 

apbsmem 7 twfbplayer 2 
bpmail 1 wheelwebtool 7 

xisemele 1 javathena 1 
corina 5 xbus 2 

schemaspy 3 ifx-framework 1 
petsoar 1 classviewer 2 

diffi 2 quickserver 1 
glengineer 6 heal 3 

follow 2 feudalismgame 1 
lilith 3 liferay 2 
lotus 1 pdfsam 1 

resources4j 1 firebird 3 
diebierse 1 - - 

The SF110 datasets contain 110 statistically 
representative open-source Java projects collected from 
SourceForge. SourceForge is a popular open-source 
repository with over 300,000 projects and more than 
2,000,000 registered users. It includes all types of projects 
with diversified functions. Thus, SF110 was appropriate for 
testing the performance of test case generation algorithms 
and frameworks. However, because of the massive number 
of projects and classes in the dataset, experiments using all 
classes in the dataset may take much time and incur high costs. 
More than 50% of classes in the SF110 dataset had low 
program complexity, which means that a simple method call 
is capable of covering most of the objectives in such classes. 
Therefore, CKJM, a program that calculates several object-
oriented metrics (e.g., weighted methods per class, depth of 

Inheritance Tree, coupling between object classes, lack of 
cohesion in methods, response for a class, and number of 
children) by processing the bytecode of compiled Java files, 
was adopted to analyze the complexity of all classes in the 
SF110 dataset. 

Specifically, the data sets used in the experiments was 
selected using the following procedure. First, the code 
complexity of all classes in the SF110 dataset was calculated 
using CKJM and the total number of objectives covered in 
each class was obtained using EvoSuite framework. Next, 
classes under test were sorted according to their complexity 
and number of objectives covered; projects containing more 
complex classes with a greater number of objectives were 
selected and included in the final test data sets. Considering 
that very few projects or classes behaved abnormally during the 
experiment, such projects or classes were excluded from the 
experiment. The projects and the number of classes selected 
from each one are presented in Table 2. 

As Table 2 indicates, 49 of the 110 projects were selected 
from the SF110 dataset. In total, 110 classes served as the 
fundamental test data for the experiments conducted in this study. 

To compare the performance of SA-DynaMOSA with 
AVM-DynaMOSA, experiments were conducted and 
repeated 10 times for each test class in the selected data sets. 
The running results were averaged for comparison and analysis. 
4) Experiment Setup 
a) Parameter Settings for the Proposed Algorithm 

The default parameters established for the DynaMOSA 
algorithm in EvoSuite have rather good performance, as 
empirically validated by other scholars. Therefore, to 
preserve the high quality of DynaMOSA and ensure that the 
experiments were conducted in a controlled setting, the same 
parameter settings (presented in Table 3) for global search 
were adopted in the proposed algorithm. 

Table 3. Parameter settings for the global optimization algorithm 
Parameter name Value 
Population size 100 
Search time 120000 seconds (2 minutes) 

Covering objectives Total number of lines, branches, and mutants to 
be covered 

Crossover rate 0.75 
Table 4. Parameter settings for AVM-DynaMOSA 
Parameter name Value 
Initial local search probability 1 
Local search probability change rate 2 

Table 5. Parameter settings for SA-DynaMOSA 
Parameter name Value 
Simulated annealing local search interval 3 
Simulated annealing local search individual number 5 
Simulated annealing local search initial probability 1 
Simulated annealing local search probability change rate 2 
Simulated annealing local search initial temperature 100 
Simulated annealing local search lowest temperature 1 
Initial cooling rate of each type of statement 0.9 
Change rate of cooling rate of various types of statements 0.8 
Symbolic execution local search interval 5 
Symbolic execution local search individual number 5 

b) Parameter Settings for Local Search Algorithms 
The specific parameter settings of AVM-DynaMOSA and 

SA-DynaMOSA are listed in Tables 4 and 5, respectively. 
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B. Experimental Results and Analyses for Test Case 
Generation based on Local Search 
1) Different Coverage Achieved for Each Project (RQ1) 
a) Line Coverage Achieved for Each Project 

The line coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 6. 
b) Branch Coverage Achieved for Each Project 

The branch coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 7. 
c) Mutation Coverage Achieved for Each Project 

The mutation coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 8: 

Figure 6 presents the number of projects with superior and 
inferior results according to the line, branch, and mutation 
coverage of SA-DynaMOSA and AVM-DynaMOSA. 
 

 
Figure 6. Number of projects with superior and inferior results in multiple 

coverage criteria 

Table 6. Mean line coverage achieved for each project 

Project Name Classes 
Statement Coverage 

Increase-rate 
Statistics 

AVM-DYNAMOSA SA-DYNAMOSA SA-DYNAMOSA versus AVM-DYNAMOSA 
%>0.50 %<-0.50 

gfarcegestionfa 2 73.59% 78.79% 7.07% 100.00%  
imsmart 2 84.14% 90.67% 7.75% 50.00%  
beanbin 1 85.25% 90.16% 5.77% 100.00%  

inspirento 3 90.71% 92.61% 2.10% 33.33%  
byuic 2 47.14% 47.56% 0.89% 50.00%  

gangup 4 95.17% 95.82% 0.69% 25.00%  
apbsmem 7 87.84% 91.56% 4.23% 28.57%  

diffi 2 92.07% 92.98% 0.99% 50.00%  
lilith 3 82.02% 81.49% -0.65%  33.33% 

resources4j 1 75.76% 86.36% 14.00% 100.00%  
hft-bomberman 2 92.92% 95.01% 2.24% 50.00%  

dom4j 5 86.57% 85.01% -1.79%  80.00% 
lhamacaw 5 63.77% 65.26% 2.34% 40.00%
battlecry 2 91.55% 89.59% -2.14%  50.00% 

wheelwebtool 7 57.61% 56.13% -2.56%  57.14% 
xbus 2 83.04% 80.86% -2.62%  50.00% 

at-robots2-j 2 83.90% 84.50% 0.71% 50.00%  
jiggler 5 63.90% 94.11% 47.28% 80.00%  

dcparseargs 1 100.00% 90.36% -9.64%  100.00% 
jcvi-javacommon 6 65.28% 65.86% 0.89% 50.00%  

quickserver 1 96.53% 95.14% 1.44%  100.00% 
weka 3 66.38% 55.89% -15.81%  100.00% 
liferay 2 74.52% 73.14% -1.86%  50.00% 
firebird 3 94.06% 92.73% -1.41%  66.67% 

Mean over all projects 84.29% 84.84%    
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 14 (20.59%) 
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 10 (14.71%) 

 
From Tables 6–8 and Figure 6, compared with AVM-

DynaMOSA, the mean coverage of SA-DynaMOSA 
increased by 0.55%, 0.69%, and 0.94% in terms of line, 
branch, and mutation coverage, respectively. SA-DynaMOSA 
achieved equivalent or higher coverage on most projects in 
terms of line and mutation coverage; only a few projects 
exhibited lower coverage. More specifically, compared with 
AVM-DynaMOSA, the coverage achieved through our 
approach on average was significantly higher in 20.59% of the 
classes tested for line, 20.59% for branch, and 25.00% for 
mutation. The improvement in mutation coverage was 
greatest among three coverage criteria. Among the projects 
with superior coverage achieved by our proposed algorithm, 
jiggler exhibited the most significant increases, of 63.61% on 
average, in line, branch, and mutation coverage; by contrast, 

weka exhibited the greatest decreases, of 16.16% on average, 
in line, branch, and mutation coverage. However, the 
performance of AVM-DynaMOSA and SA-DynaMOSA 
exhibited small differences in terms of branch coverage. That 
is, among 49 projects, SA-DynaMOSA outperformed AVM-
DynaMOSA on 14 projects, but it was inferior to AVM-
DynaMOSA on 15 projects. The rest of the projects achieved 
equivalent coverage using both algorithms. Moreover, the 
mean coverage achieved by SA-DynaMOSA still surpassed 
that of AVM-DynaMOSA. From the aforementioned results, 
this study concluded that the SA-DynaMOSA algorithm has 
the potential to effectively improve line, branch, and mutation 
coverage for multi-criteria test case generation. 
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Table 7. Branch coverage achieved for each project 

Project Name Classes 
Branch coverage 

Increase-rate 
Statistics 

AVM-DYNAMOSA SA-DYNAMOSA SA-DYNAMOSA versus AVM-DYNAMOSA 
%>0.50 %<-0.50 

gfarcegestionfa 2 67.59% 79.55% 17.70% 100.00%  
imsmart 2 76.11% 86.11% 13.14% 50.00%  
beanbin 1 78.72% 82.98% 5.41% 100.00%  
byuic 2 40.08% 40.81% 1.82% 50.00%  

apbsmem 7 88.35% 92.29% 4.45% 28.57%  
schemaspy 3 68.65% 69.35% 1.03% 66.67%  

diffi 2 90.23% 91.43% 1.33% 50.00%  
lilith 3 80.91% 79.90% -1.24%  33.33% 

resources4j 1 70.27% 81.08% 15.38% 100.00%  
jhandballmoves 3 96.53% 100.00% 3.60% 33.33%  
hft-bomberman 2 94.68% 94.12% -0.59%  50.00% 

dom4j 5 83.93% 81.70% -2.66%  80.00% 
openjms 2 73.61% 72.76% -1.15%  50.00% 

lhamacaw 5 78.01% 78.91% 1.15% 20.00%  
echodep 2 83.33% 81.41% -2.31%  50.00% 
battlecry 2 84.70% 80.15% -5.37%  50.00% 
openhre 3 92.96% 92.35% -0.65%  33.33% 

twfbplayer 2 91.09% 90.32% -0.84%  50.00% 
wheelwebtool 7 66.90% 65.76% -1.72%  71.43% 

xbus 2 81.32% 79.28% -2.51%  50.00% 
at-robots2-j 2 82.86% 83.36% 0.60% 50.00%  

jiggler 5 55.30% 92.80% 67.81% 80.00%  
dcparseargs 1 96.25% 91.25% -5.19%  100.00% 

jcvi-javacommon 6 64.16% 64.97% 1.27% 50.00%  
quickserver 1 95.00% 91.67% -3.51%  100.00% 

heal 3 80.59% 78.83% -2.18%  66.67% 
weka 3 62.44% 51.25% -17.91%  100.00% 

liferay 2 69.99% 68.24% -2.50%  50.00% 
firebird 3 82.89% 83.83% 1.13% 66.67%  

Mean over all projects 81.96% 82.65%    
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 14 (20.59%) 
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 15 (22.61%) 

 

Table 8. Mutation coverage achieved for each project 

Project Name Classes 
Mutation Coverage 

Increase-rate 
Statistics 

AVM-DYNAMOSA SA-DYNAMOSA SA-DYNAMOSA versus AVM-DYNAMOSA 
%>0.50 %<-0.50 

gfarcegestionfa 2 70.67% 81.48% 15.29% 100.00%  
water-simulator 2 91.16% 91.71% 0.61% 50.00%  

imsmart 2 73.33% 90.00% 22.73% 50.00%  
jdbacl 1 94.17% 97.50% 3.54% 100.00%  

beanbin 1 91.24% 93.43% 2.40% 100.00%  
inspirento 3 90.82% 91.98% 1.28% 33.33%  

byuic 2 39.42% 40.01% 1.50% 50.00%  
gangup 4 98.13% 97.54% -0.60%  25.00% 

apbsmem 7 94.14% 96.47% 2.48% 14.29%  
bpmail 1 96.25% 97.50% 1.30% 100.00%  
corina 5 75.46% 74.85% -0.81%  60.00% 
diffi 2 86.94% 89.65% 3.11% 50.00%  
lilith 3 76.69% 75.57% -1.45%  66.67% 
lotus 1 98.79% 97.18% -1.63%  100.00% 

diebierse 1 99.47% 100.00% 0.53% 100.00%  
jhandballmoves 3 98.30% 99.05% 0.76% 33.33%  

dom4j 5 80.88% 80.05% -1.02%  60.00% 
openjms 2 81.42% 80.04% -1.70%  50.00% 

lhamacaw 5 61.15% 62.63% 2.43% 20.00%  
battlecry 2 87.49% 85.04% -2.80%  50.00% 

fim1 2 54.93% 54.49% -0.81%  50.00% 
wheelwebtool 7 61.17% 60.67% -0.82%  42.86% 

javathena 1 93.42% 94.74% 1.41% 100.00%  
xbus 2 78.89% 77.47% -1.80%  50.00% 

jiggler 5 49.11% 88.76% 80.73% 80.00%  
jcvi-javacommon 6 56.45% 56.77% 0.57% 33.33%  

quickserver 1 88.30% 86.91% -1.58%  100.00% 
heal 3 81.22% 82.69% 1.81% 33.33%  
weka 3 69.33% 59.08% -14.77%  66.67% 

Mean over all projects 82.68% 83.62%    
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 17 (25.00%) 
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 12 (17.65%) 
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2) Multi-Criteria Coverage and Search Performance 
Achieved by the Algorithm (RQ2) 

a) Multi-Criteria Coverage Results 
The multi-criteria coverage results are compared between 

AVM-DynaMOSA and SA-DynaMOSA in Table 9. As Table 9 
indicates, the multi-criteria coverage achieved by SA-
DynaMOSA was improved compared with that achieved by 
DynaMOSA. The proposed algorithm achieved higher 
coverage on 19 (33.93%) of the projects under test, with 12 
(21.43%) projects exhibiting lower coverage. Among the 
projects with superior coverage achieved by the proposed 
algorithm, beanbin exhibited the most significant increases 

(21.13%), whereas weka exhibited the most significant 
decreases (17.76%) for multi-criteria coverage. For the 
remaining projects, the multi-criteria coverage achieved by 
the proposed algorithm was the same as that achieved by 
AVM-DynaMOSA. Moreover, the mean multi-criteria 
coverage of SA-DynaMOSA increased by 0.52% compared 
with that of AVM-DynaMOSA. From the aforementioned 
results, this study concluded that for multi-criteria coverage, 
the proposed local search algorithm had a positive effect on 
improving the efficiency of many-objective search-based test 
case generation; furthermore, it did not cause the search 
performance of the algorithm to decline significantly. 

Table 9. Comparison of multi-criteria coverage between AVM-DynaMOSA and SA-DynaMOSA 

Project Name Classes 
Multi-Criteria Coverage 

Increase-rate 
Statistics 

AVM-DYNAMOSA SA-DYNAMOSA SA-DYNAMOSA versus AVM-DYNAMOSA 
%>0.50 %<-0.50 

templateit 1 72.22% 74.31% 2.88% 100.00%  
gfarcegestionfa 2 77.57% 79.76% 2.82% 50.00%  

imsmart 2 74.99% 87.11% 16.16% 50.00%  
jdbacl 1 96.47% 99.17% 2.80% 100.00%  

beanbin 1 69.45% 84.12% 21.13% 100.00%  
jsecurity 5 88.35% 88.84% 0.56% 20.00%  

byuic 2 41.04% 41.27% 0.56% 50.00%  
jni-inchi 1 83.86% 81.30% -3.06%  100.00% 
apbsmem 7 90.01% 92.98% 3.30% 28.57%  

diffi 2 89.75% 91.35% 1.79% 50.00%  
glengineer 6 77.84% 85.41% 9.72% 83.33%  

lotus 1 93.47% 92.05% -1.52%  100.00% 
resources4j 1 82.01% 89.15% 8.71% 100.00%  

jhandballmoves 3 98.28% 99.70% 1.45% 33.33%  
hft-bomberman 2 94.04% 93.35% -0.74%  50.00% 

dom4j 5 83.52% 82.24% -1.53%  40.00% 
openjms 2 76.37% 75.49% -1.15%  50.00% 

lhamacaw 5 67.34% 68.71% 2.04% 20.00%  
battlecry 2 86.77% 85.46% -1.51%  50.00% 
openhre 3 74.34% 83.92% 12.88% 33.33%  

twfbplayer 2 91.07% 93.19% 2.33% 50.00%  
wheelwebtool 7 60.73% 58.65% -3.43%  57.14% 

javathena 1 66.30% 69.14% 4.28% 100.00%  
xbus 2 80.08% 80.50% 0.52% 50.00%  

jiggler 5 86.97% 91.26% 4.93% 100.00%  
dcparseargs 1 87.99% 76.68% -12.85%  100.00% 

jcvi-javacommon 6 61.28% 60.94% -0.55%  50.00% 
quickserver 1 93.28% 87.24% -6.47%  100.00% 

heal 3 78.83% 79.34% 0.65% 33.33%  
weka 3 65.74% 54.07% -17.76%  100.00% 
liferay 2 71.74% 70.92% -1.14%  50.00% 

Mean over all projects 81.89% 82.41%    
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 19 (33.93%) 
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 12 (21.43%) 

 
b) Search Efficiency Comparison 

The search performance results are compared between 
AVM-DynaMOSA and SA-DynaMOSA in Table 10. 
Although the coverage of testing criteria of the final test suite 
was important, the search efficiency of the corresponding 
algorithm was also crucial. Therefore, the area under the curve 
(AUC), a statistical value representing the search efficiency of 
the test case generation algorithm, was also used for 
comparison. An algorithm with a high search efficiency (or 
AUC value) is preferred because it has the potential to produce 
a test suite with high coverage in a short time. As indicated in 
Table 10, SA-DynaMOSA achieved a higher AUC value than 
AVM-DynaMOSA for most tested projects, with an average 

improvement of 0.65%. Compared with AVM-DynaMOSA, 
the AUC value achieved by SA-DynaMOSA was on average 
significantly higher in 38.24% of the tested classes. This 
demonstrated that the proposed local search algorithm was 
valid. As the efficiency of test case generation algorithm 
improved, test cases with high coverage were efficiently 
generated in the end. 
C. Threats to validity 

To reduce the randomness of the results generated by the 
improved algorithm, the experiments were repeated 10 times. 
The results obtained from the experiments were averaged and 
the mean values were selected for analysis and comparison. 
However, such repeated experiments only lowered but did 
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not entirely remove the influence of the randomness of the 
improved algorithm. Additionally, a proportional change of 
no more than 0.5% was considered a nonsignificant change 
or no change. Therefore, projects or classes with an increase 
rate of less than 0.5% were removed when the coverage and 
search efficiency of the algorithms were compared. Moreover, 
many parameters might have affected relevant results during 
the experiments. To ensure the validity of the experimental 
results, the same parameter settings used in this study were 
adopted across all of the algorithms under comparison; 
additionally, all algorithms were run in the same framework 

for controlled experiments. Furthermore, the data sets 
selected for the experiments have been widely applied in 
similar studies. However, the selected data sets did not 
contain the most recent open-source projects. With the aim of 
enhancing the generalizabilty of the research findings, this 
study evaluated both algorithms according to the three most 
common coverage criteria – namely line, branch, and 
mutation. To determine the effectiveness of the proposed 
algorithm on other coverage criteria, such as MC/DC, 
additional experiments and further analysis are required. 

Table 10. Search efficiency of AVM-DynaMOSA and SA-DynaMOSA for each project 

Project Name Classes 
Multi-Criteria Coverage 

Increase-rate 
Statistics 

AVM-DYNAMOSA SA-DYNAMOSA SA-DYNAMOSA versus AVM-DYNAMOSA 
%>0.50 %<-0.50 

templateit 1 71.62% 73.68% 2.88% 100.00%  
gfarcegestionfa 2 74.61% 78.72% 5.51% 50.00%  
water-simulator 2 84.25% 86.19% 2.30% 50.00%  

imsmart 2 73.64% 76.60% 4.02% 50.00%  
jdbacl 1 95.64% 98.23% 2.70% 100.00%  

omjstate 1 90.57% 91.21% 0.70% 100.00%  
beanbin 1 68.07% 82.00% 20.46% 100.00%  

inspirento 3 85.30% 89.84% 5.32% 66.67%  
jsecurity 5 86.66% 87.10% 0.51% 20.00%  

byuic 2 39.70% 37.87% -4.59%  50.00% 
jni-inchi 1 83.11% 80.59% -3.03%  100.00% 
apbsmem 7 81.62% 85.16% 4.33% 42.86%  
xisemele 1 84.94% 82.42% -2.96%  100.00% 

corina 5 71.19% 71.92% 1.02% 80.00%  
schemaspy 3 64.16% 65.06% 1.41% 33.33%  

diffi 2 85.27% 89.56% 5.04% 50.00%  
glengineer 6 74.42% 80.48% 8.15% 83.33%  

follow 2 68.77% 67.88% -1.30%  100.00% 
lilith 3 77.05% 77.70% 0.84% 33.33%  
lotus 1 92.60% 91.27% -1.44%  100.00% 

resources4j 1 80.85% 87.18% 7.82% 100.00%  
jhandballmoves 3 95.47% 96.60% 1.19% 33.33%  
hft-bomberman 2 92.02% 90.25% -1.93%  100.00% 

dom4j 5 78.47% 79.12% 0.83% 40.00%  
openjms 2 73.12% 72.66% -0.63%  50.00% 

lhamacaw 5 61.33% 62.54% 1.97% 40.00%  
echodep 2 71.34% 68.80% -3.57%  50.00% 
battlecry 2 66.03% 76.35% 15.63% 50.00%  

fim1 2 56.27% 56.93% 1.18% 50.00%  
openhre 3 71.35% 81.85% 14.71% 100.00%  

twfbplayer 2 87.48% 89.27% 2.04% 50.00%  
wheelwebtool 7 55.11% 51.53% -6.49%  71.43% 

javathena 1 65.57% 68.11% 3.87% 100.00%  
at-robots2-j 2 79.91% 78.72% -1.49%  50.00% 

jiggler 5 71.05% 81.41% 14.58% 100.00%  
dcparseargs 1 85.52% 72.58% -15.14%  100.00% 
classviewer 2 87.90% 86.71% -1.35%  100.00% 

jcvi-javacommon 6 57.40% 56.54% -1.50%  33.33% 
quickserver 1 91.54% 86.11% -5.94%  100.00% 

heal 3 76.37% 75.78% -0.76%  33.33% 
weka 3 51.52% 49.15% -4.60%  66.67% 
liferay 2 66.87% 64.74% -3.19%  50.00% 
pdfsam 1 81.70% 83.29% 1.95% 100.00%  
firebird 3 85.00% 83.00% -2.35%  66.67% 

Mean over all projects 78.80% 79.45%    
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 26 (38.24%) 
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 18 (26.47%) 
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V. CONCLUSION 
Test case generation technology serves as a critical basis 

for software testing. How one can obtain test cases accurately 
with high coverage in a limited time is always a challenge in 
the field of testing. The search-based test case generation 
technique has become a heated topic in this field. 
DynaMOSA in EvoSuite is the most advanced and effective 
search-based test case generation algorithm at present. 
However, DynaMOSA uses the AVM for local search, which 
follows a greedy strategy that considers each input variable 
of an optimization function independently and attempts to 
optimize it. Problems with this kind of search are that it can 
easily become stuck in a local optimal solution and its search 
capability becomes inadequate in the late stage. Such 
constraints may lead to a dramatic drop in search 
performance. To solve these problems, this study 
incorporated an adaptive local search strategy with simulated 
annealing. Compared with the AVM, our proposed algorithm 
had superior neighborhood searchability for candidate 
solutions during test generation. The proposed algorithm was 
experimentally validated on selected open-source data sets 
from SF110. The results indicated that, compared with AVM-
DynaMOSA, the coverage achieved by our approach on 
average was significantly higher in 20.59% of the tested 
classes for line, 20.59% for branch, 25.00% for mutation, and 
33.93% for multicriteria. The mean coverage for line, branch, 
mutation, and multi-criteria of SA-DynaMOSA increased by 
0.55%, 0.69%, 0.94%, and 0.52%, respectively, compared 
with AVM-DynaMOSA. In terms of the algorithms’ search 
efficiency, SA-DynaMOSA also outperformed AVM-
DynaMOSA and produced a higher AUC value. 
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